Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Intraspecific trait variation across elevation predicts a widespread tree species' climate niche and range limits.

Identifieur interne : 000308 ( Main/Exploration ); précédent : 000307; suivant : 000309

Intraspecific trait variation across elevation predicts a widespread tree species' climate niche and range limits.

Auteurs : Michael E. Van Nuland ; John B. Vincent ; Ian M. Ware ; Liam O. Mueller ; Shannon L J. Bayliss ; Kendall K. Beals ; Jennifer A. Schweitzer ; Joseph K. Bailey

Source :

RBID : pubmed:32489616

Abstract

Global change is widely altering environmental conditions which makes accurately predicting species range limits across natural landscapes critical for conservation and management decisions. If climate pressures along elevation gradients influence the distribution of phenotypic and genetic variation of plant functional traits, then such trait variation may be informative of the selective mechanisms and adaptations that help define climatic niche limits. Using extensive field surveys along 16 elevation transects and a large common garden experiment, we tested whether functional trait variation could predict the climatic niche of a widespread tree species (Populus angustifolia) with a double quantile regression approach. We show that intraspecific variation in plant size, growth, and leaf morphology corresponds with the species' total climate range and certain climatic limits related to temperature and moisture extremes. Moreover, we find evidence of genetic clines and phenotypic plasticity at environmental boundaries, which we use to create geographic predictions of trait variation and maximum values due to climatic constraints across the western US. Overall, our findings show the utility of double quantile regressions for connecting species distributions and climate gradients through trait-based mechanisms. We highlight how new approaches like ours that incorporate genetic variation in functional traits and their response to climate gradients will lead to a better understanding of plant distributions as well as identifying populations anticipated to be maladapted to future environments.

DOI: 10.1002/ece3.5969
PubMed: 32489616
PubMed Central: PMC7244802


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Intraspecific trait variation across elevation predicts a widespread tree species' climate niche and range limits.</title>
<author>
<name sortKey="Van Nuland, Michael E" sort="Van Nuland, Michael E" uniqKey="Van Nuland M" first="Michael E" last="Van Nuland">Michael E. Van Nuland</name>
<affiliation>
<nlm:affiliation>Department of Biology Stanford University Stanford CA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biology Stanford University Stanford CA USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vincent, John B" sort="Vincent, John B" uniqKey="Vincent J" first="John B" last="Vincent">John B. Vincent</name>
<affiliation>
<nlm:affiliation>School of Environmental and Forest Sciences University of Washington Seattle WA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">School of Environmental and Forest Sciences University of Washington Seattle WA USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ware, Ian M" sort="Ware, Ian M" uniqKey="Ware I" first="Ian M" last="Ware">Ian M. Ware</name>
<affiliation>
<nlm:affiliation>Institute of Pacific Islands Forestry USDA Forest Service Pacific Southwest Research Station Hilo HI USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Institute of Pacific Islands Forestry USDA Forest Service Pacific Southwest Research Station Hilo HI USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Liam O" sort="Mueller, Liam O" uniqKey="Mueller L" first="Liam O" last="Mueller">Liam O. Mueller</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bayliss, Shannon L J" sort="Bayliss, Shannon L J" uniqKey="Bayliss S" first="Shannon L J" last="Bayliss">Shannon L J. Bayliss</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Beals, Kendall K" sort="Beals, Kendall K" uniqKey="Beals K" first="Kendall K" last="Beals">Kendall K. Beals</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Schweitzer, Jennifer A" sort="Schweitzer, Jennifer A" uniqKey="Schweitzer J" first="Jennifer A" last="Schweitzer">Jennifer A. Schweitzer</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Joseph K" sort="Bailey, Joseph K" uniqKey="Bailey J" first="Joseph K" last="Bailey">Joseph K. Bailey</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32489616</idno>
<idno type="pmid">32489616</idno>
<idno type="doi">10.1002/ece3.5969</idno>
<idno type="pmc">PMC7244802</idno>
<idno type="wicri:Area/Main/Corpus">000273</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000273</idno>
<idno type="wicri:Area/Main/Curation">000273</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000273</idno>
<idno type="wicri:Area/Main/Exploration">000273</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Intraspecific trait variation across elevation predicts a widespread tree species' climate niche and range limits.</title>
<author>
<name sortKey="Van Nuland, Michael E" sort="Van Nuland, Michael E" uniqKey="Van Nuland M" first="Michael E" last="Van Nuland">Michael E. Van Nuland</name>
<affiliation>
<nlm:affiliation>Department of Biology Stanford University Stanford CA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biology Stanford University Stanford CA USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vincent, John B" sort="Vincent, John B" uniqKey="Vincent J" first="John B" last="Vincent">John B. Vincent</name>
<affiliation>
<nlm:affiliation>School of Environmental and Forest Sciences University of Washington Seattle WA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">School of Environmental and Forest Sciences University of Washington Seattle WA USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ware, Ian M" sort="Ware, Ian M" uniqKey="Ware I" first="Ian M" last="Ware">Ian M. Ware</name>
<affiliation>
<nlm:affiliation>Institute of Pacific Islands Forestry USDA Forest Service Pacific Southwest Research Station Hilo HI USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Institute of Pacific Islands Forestry USDA Forest Service Pacific Southwest Research Station Hilo HI USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Liam O" sort="Mueller, Liam O" uniqKey="Mueller L" first="Liam O" last="Mueller">Liam O. Mueller</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bayliss, Shannon L J" sort="Bayliss, Shannon L J" uniqKey="Bayliss S" first="Shannon L J" last="Bayliss">Shannon L J. Bayliss</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Beals, Kendall K" sort="Beals, Kendall K" uniqKey="Beals K" first="Kendall K" last="Beals">Kendall K. Beals</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Schweitzer, Jennifer A" sort="Schweitzer, Jennifer A" uniqKey="Schweitzer J" first="Jennifer A" last="Schweitzer">Jennifer A. Schweitzer</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Joseph K" sort="Bailey, Joseph K" uniqKey="Bailey J" first="Joseph K" last="Bailey">Joseph K. Bailey</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Global change is widely altering environmental conditions which makes accurately predicting species range limits across natural landscapes critical for conservation and management decisions. If climate pressures along elevation gradients influence the distribution of phenotypic and genetic variation of plant functional traits, then such trait variation may be informative of the selective mechanisms and adaptations that help define climatic niche limits. Using extensive field surveys along 16 elevation transects and a large common garden experiment, we tested whether functional trait variation could predict the climatic niche of a widespread tree species (
<i>Populus angustifolia</i>
) with a double quantile regression approach. We show that intraspecific variation in plant size, growth, and leaf morphology corresponds with the species' total climate range and certain climatic limits related to temperature and moisture extremes. Moreover, we find evidence of genetic clines and phenotypic plasticity at environmental boundaries, which we use to create geographic predictions of trait variation and maximum values due to climatic constraints across the western US. Overall, our findings show the utility of double quantile regressions for connecting species distributions and climate gradients through trait-based mechanisms. We highlight how new approaches like ours that incorporate genetic variation in functional traits and their response to climate gradients will lead to a better understanding of plant distributions as well as identifying populations anticipated to be maladapted to future environments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32489616</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Intraspecific trait variation across elevation predicts a widespread tree species' climate niche and range limits.</ArticleTitle>
<Pagination>
<MedlinePgn>3856-3867</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.5969</ELocationID>
<Abstract>
<AbstractText>Global change is widely altering environmental conditions which makes accurately predicting species range limits across natural landscapes critical for conservation and management decisions. If climate pressures along elevation gradients influence the distribution of phenotypic and genetic variation of plant functional traits, then such trait variation may be informative of the selective mechanisms and adaptations that help define climatic niche limits. Using extensive field surveys along 16 elevation transects and a large common garden experiment, we tested whether functional trait variation could predict the climatic niche of a widespread tree species (
<i>Populus angustifolia</i>
) with a double quantile regression approach. We show that intraspecific variation in plant size, growth, and leaf morphology corresponds with the species' total climate range and certain climatic limits related to temperature and moisture extremes. Moreover, we find evidence of genetic clines and phenotypic plasticity at environmental boundaries, which we use to create geographic predictions of trait variation and maximum values due to climatic constraints across the western US. Overall, our findings show the utility of double quantile regressions for connecting species distributions and climate gradients through trait-based mechanisms. We highlight how new approaches like ours that incorporate genetic variation in functional traits and their response to climate gradients will lead to a better understanding of plant distributions as well as identifying populations anticipated to be maladapted to future environments.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Nuland</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3333-0212</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology Stanford University Stanford CA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vincent</LastName>
<ForeName>John B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences University of Washington Seattle WA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ware</LastName>
<ForeName>Ian M</ForeName>
<Initials>IM</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2101-5653</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Pacific Islands Forestry USDA Forest Service Pacific Southwest Research Station Hilo HI USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mueller</LastName>
<ForeName>Liam O</ForeName>
<Initials>LO</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bayliss</LastName>
<ForeName>Shannon L J</ForeName>
<Initials>SLJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beals</LastName>
<ForeName>Kendall K</ForeName>
<Initials>KK</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schweitzer</LastName>
<ForeName>Jennifer A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bailey</LastName>
<ForeName>Joseph K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">adaptation</Keyword>
<Keyword MajorTopicYN="N">climate range</Keyword>
<Keyword MajorTopicYN="N">ecological niche models</Keyword>
<Keyword MajorTopicYN="N">elevation gradient</Keyword>
<Keyword MajorTopicYN="N">functional traits</Keyword>
<Keyword MajorTopicYN="N">intraspecific variation</Keyword>
<Keyword MajorTopicYN="N">phenotypic plasticity</Keyword>
<Keyword MajorTopicYN="N">quantile regression</Keyword>
</KeywordList>
<CoiStatement>None declared.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32489616</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.5969</ArticleId>
<ArticleId IdType="pii">ECE35969</ArticleId>
<ArticleId IdType="pmc">PMC7244802</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Glob Chang Biol. 2016 Jan;22(1):137-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26061811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2574697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Apr 5;556(7699):99-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29562235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Mar;91(4):455-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2017 Jun 19;9(4):plx027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28721188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2008 Feb;1(1):95-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):740-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2017 Jan;23(1):164-176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27543682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Plant Sci. 2017 Feb 14;5(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28224055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 22;428(6985):821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1999 Mar;86(3):333-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10077496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Apr;25(4):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Apr;21(4):178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Oct;172(2):635-649</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27591186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2005 May;8(5):461-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21352449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13739-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2019 Jan 16;5(1):eaat4313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30746436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2015 Jan;18(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25270536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2019 Jan 18;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30659721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 21;9(3):e92642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24658097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Nov;17(11):1351-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25205436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2017 Apr 28;1(6):150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28812635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2014 Feb;183(2):157-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24464192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Jul;93(7):1527-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22919900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Sep 28;12(9):e0185539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28957402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(1):152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25407964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Mar;14(3):301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21265976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2013 Jul;3(7):2322-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23919173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2019 Mar;25(3):775-793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30597712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bailey, Joseph K" sort="Bailey, Joseph K" uniqKey="Bailey J" first="Joseph K" last="Bailey">Joseph K. Bailey</name>
<name sortKey="Bayliss, Shannon L J" sort="Bayliss, Shannon L J" uniqKey="Bayliss S" first="Shannon L J" last="Bayliss">Shannon L J. Bayliss</name>
<name sortKey="Beals, Kendall K" sort="Beals, Kendall K" uniqKey="Beals K" first="Kendall K" last="Beals">Kendall K. Beals</name>
<name sortKey="Mueller, Liam O" sort="Mueller, Liam O" uniqKey="Mueller L" first="Liam O" last="Mueller">Liam O. Mueller</name>
<name sortKey="Schweitzer, Jennifer A" sort="Schweitzer, Jennifer A" uniqKey="Schweitzer J" first="Jennifer A" last="Schweitzer">Jennifer A. Schweitzer</name>
<name sortKey="Van Nuland, Michael E" sort="Van Nuland, Michael E" uniqKey="Van Nuland M" first="Michael E" last="Van Nuland">Michael E. Van Nuland</name>
<name sortKey="Vincent, John B" sort="Vincent, John B" uniqKey="Vincent J" first="John B" last="Vincent">John B. Vincent</name>
<name sortKey="Ware, Ian M" sort="Ware, Ian M" uniqKey="Ware I" first="Ian M" last="Ware">Ian M. Ware</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000308 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000308 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32489616
   |texte=   Intraspecific trait variation across elevation predicts a widespread tree species' climate niche and range limits.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32489616" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020